Collateral Tissue Damage by Several Types of Coagulation (Monopolar, Bipolar, Cold Plasma and Ultrasonic) in a Minimally Invasive, Perfused Liver Model

Author:

Carus Thomas1,Rackebrandt Klaas2

Affiliation:

1. Department of General, Visceral and Vascular Surgery, Center of Minimally Invasive Surgery, Hospital Cuxhaven—University of Hanover Teaching Hospital, 27474 Cuxhaven, Germany

2. Medical Engineering, Bremerhaven University of Applied Sciences, 27568 Bremerhaven, Germany

Abstract

Hemostasis in minimally invasive surgery causes tissue damage. Regardless of the method of production of thermal energy, a quick and safe coagulation is essential for its clinical use. In this study we examined the tissue damage in the isolated perfused pig liver using monopolar, bipolar, cold plasma, and ultrasonic coagulation. In a minimally invasive in vitro setup, a 2-3 cm slice of the edge of the perfused pig liver was resected. After hemostasis was achieved, liver tissue of the coagulated area was given to histopathological examination. The depth of tissue necrosis, the height of tissue loss, and the time until sufficient hemostasis was reached were analyzed. The lowest risk for extensive tissue damage could be shown for the bipolar technique, combined with the highest efficiency in hemostasis. Using cold plasma, coagulation time was longer with a deeper tissue damage. Monopolar technique showed the worst results with the highest tissue damage and a long coagulation time. Ultrasonic coagulation was not useful for coagulation of large bleeding areas. In summary, bipolar technique led to less tissue damage and best coagulation results in our minimally invasive model. These results could be important to recommend bipolar coagulation for clinical use in minimally invasive surgery.

Publisher

Hindawi Limited

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3