Luminescence Properties of Eu- and Mg-Codoped Sol-Gel SiO2 Glasses

Author:

Onani Martin O.1,Mushonga Paul1,Koao Lehlohonolo F.2,Dejene Francis B.2

Affiliation:

1. Department of Chemistry, University of Western Cape, Private Bag X17, Bellville 7535, South Africa

2. Department of Physics, University of the Free State, Qwaqwa Campus, Private Bag X13, Phuthaditjhaba 9866, South Africa

Abstract

A series of SiO2 nanostructures codoped with Eu3+; Mg2+ ions were obtained by a sol-gel method. The gels synthesized by the hydrolysis of Si(OC2H5)4, Eu(NO3)3·6H2O, and Mg(NO3)2 were heated in air at 600°C for 2 hours. Firstly, the total amount of Eu3+ ions was varied from 0 to 2.0 mol% to investigate the effect of self-damping, while in the second case, the Eu3+ ions were kept constant in the experiment at 0.5 mol% total doping and Mg2+ ions varied. The samples were characterized by X-ray diffraction, TEM, EDS, and UV lamp-excited luminescence spectroscopy. The Eu3+ ions were homogeneously dispersed in the silica and interacting with the small (1–5 nm) amorphous silica matrix. Strong red emissions located at 614 nm and 590 nm for doped and codoped SiO2 were observed from the UV light excitation at room temperature. The composition of around 1.25 mol% Eu3+ gave highest emission intensity. SiO2; Mg2+ ions portray strongly enhanced emissions due to energy transfer from Mg2+ to Eu3+, which is due to radiative recombination. An increase in luminescence intensity was observed as the Mg2+-to-Eu3+ ratio increased for the range investigated. The results show Eu3+ ion is located inside or at the surface of disordered SiO2 nanoparticles.

Funder

University of the Free State

Publisher

Hindawi Limited

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3