Yttrium Oxide Nanoparticles Prepared by Heat Treatment of Cathodically Grown Yttrium Hydroxide

Author:

Aghazadeh Mustafa1,Ghaemi Mehdi2,Nozad Golikand Ahmad1,Yousefi Taher1,Jangju Esmaeil1

Affiliation:

1. Material Research School, NSTRI, P.O. Box 14395-836, Tehran, Iran

2. Department of Chemistry, Science Faculty, Golestan University, P.O. Box 49138-15739, Gorgan, Iran

Abstract

An easy two-step synthetic route is reported for the manufacture of yttrium oxide nanoparticles utilizing aqueous yttrium nitrate solution. In the first step, yttrium hydroxide precursor was grown on stainless steel electrode using a simple cathodic electrodeposition at room temperature. The subsequent second step includes the thermal decomposition of yttrium hydroxide powder at different temperatures for two hours. The synthesized products were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetery (DSC), FT-IR and Raman spectroscopy. Results showed that the as-deposited Y(OH)3 is composed of nanoparticles with grain size of approximately 40–50 nm. Cubic-structured Y2O3 phase with a porous morphology was finally formed when temperature was raised to 600°C. Results suggested that the final oxide nanoparticles are crystalline and consist only of yttrium oxide phase forming agglomerates of many primary particles with average diameter around 30 nm.

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3