Organ-Tissue Level Model of Resting Energy Expenditure Across Mammals: New Insights into Kleiber's Law

Author:

Wang ZiMian1,Zhang Junyi2,Ying Zhiliang2,Heymsfield Steven B.3

Affiliation:

1. Obesity Research Center, St. Luke’s-Roosevelt Hospital, College of Physicians and Surgeons, Columbia University, New York City, NY 10025, USA

2. Department of Statistics, Columbia University, New York City, NY 10027, USA

3. Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA

Abstract

Background. Kleiber’s law describes the quantitative association between whole-body resting energy expenditure (REE, in kcal/d) and body mass (M, in kg) across mature mammals as REE =70.0×M0.75. The basis of this empirical function is uncertain. Objectives. The study objective was to establish an organ-tissue level REE model across mammals and to explore the body composition and physiologic basis of Kleiber’s law. Design. We evaluated the hypothesis that REE in mature mammals can be predicted by a combination of two variables: the mass of individual organs/tissues and their corresponding specific resting metabolic rates. Data on the mass of organs with high metabolic rate (i.e., liver, brain, heart, and kidneys) for 111 species ranging in body mass from 0.0075 (shrew) to 6650 kg (elephant) were obtained from a literature review. Results. REEp predicted by the organ-tissue level model was correlated with body mass (correlation r=0.9975) and resulted in the function REEp=66.33×M0.754, with a coefficient and scaling exponent, respectively, close to 70.0 and 0.75 (P>0.05) as observed by Kleiber. There were no differences between REEp and REEk calculated by Kleiber’s law; REEp was correlated (r=0.9994) with REEk. The mass-specific REEp, that is, (REE/M)p, was correlated with body mass (r=0.9779) with a scaling exponent −0.246, close to −0.25 as observed with Kleiber’s law. Conclusion. Our findings provide new insights into the organ/tissue energetic components of Kleiber’s law. The observed large rise in REE and lowering of REE/M from shrew to elephant can be explained by corresponding changes in organ/tissue mass and associated specific metabolic rate.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Hindawi Limited

Subject

General Medicine

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3