Optical Waveguide BTX Gas Sensor Based on Yttrium-Doped Lithium Iron Phosphate Thin Film

Author:

Nizamidin Patima1,Yimit Abliz1,Nurulla Ismayil1,Itoh Kiminori2

Affiliation:

1. College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, China

2. Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama 240-8501, Japan

Abstract

Yttrium-doped LiFePO4 powder was synthesized using the hydrothermal method in one step and was used as a sensing material. An optical waveguide (OWG) sensor based on Yttrium-doped LiFePO4 has been developed by spin coating a thin film of LiFe0.99Y0.01PO4 onto a single-mode Tin-diffused glass optical waveguide. Light was coupled into and out of glass OWG employed by a pair of prisms. The guided wave transmits in waveguide layer and passes through the film as an evanescent wave. The sensing film is stable in air, but when exposed to target gas at room temperature, its optical properties such as transmittance (T) and refractive index (nf) were changed; thus, the transmitted light intensity was changed. The LiFe0.99Y0.01PO4 thin film OWG exhibits reversible response to xylene gas in the range of 0.1–1000 ppm. When the concentration of BTX gases was lower than 1ppm, other substances caused a little interference with the detection of xylene vapor. Compared to pure LiFePO4 thin film OWG, this sensor exhibited higher sensitivity to BTXs.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3