Laboratory Model Test on Improving the Properties of Soft Clay by Electrokinetics

Author:

Mohamedelhassan Eltayeb1

Affiliation:

1. Department of Civil Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON, Canada P7B 5E1

Abstract

This experimental study was carried out in two test series to investigate the feasibility of decreasing the water content and increasing the shear strength and axial load capacity of laboratory-prepared soft clay by electrokinetic treatment. The focus of the investigations is the influence of pore fluid chemistry (fresh or highly saline water) on the gained improvement and on the energy consumption. The results showed that electrokinetics was effective in improving the properties of the soft clay with fresh and saline water. The degree of improvement, however, was superior in tests with freshwaters along with a lower energy consumption. The minimum water content and the maximum shear strength after the treatment were reported near the anode (28% ± 3.6 and 99.3 kPa ± 15.4 compared to 49.7% ± 3.1 and 12.1 kPa ± 1.7 in the control). The maximum axial load capacity of the foundation model after the treatment was 416 N compared to 28 N in the control. The energy consumption varied between 69.1 and 1994.6 Whr.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Hindawi Limited

Subject

General Arts and Humanities

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3