Evaluation of Viability and Proliferation Profiles on Macrophages Treated with Silica Nanoparticles In Vitro via Plate-Based, Flow Cytometry, and Coulter Counter Assays

Author:

Bancos S.1,Tsai D.-H.2,Hackley V.2,Weaver J. L.1,Tyner K. M.1

Affiliation:

1. Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Building 64, Room 2086 HFD-910, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA

2. Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8520, Gaithersburg, MD 20899-850, USA

Abstract

Nanoparticles (NPs) are known to interfere with many high-throughput cell viability and cell proliferation assays, which complicates the assessment of their potential toxic effects. The aim of this study was to compare viability and proliferation results for colloidal silica (SiO2 NP; 7 nm) in the RAW 264.7 mouse macrophage cell line using three different techniques: plate-based assays, flow cytometry analysis, and Coulter counter assays. Our data indicate that CellTiter-Blue, XTT, and CyQuant plate-based assays show increased values over control at low SiO2 NPs concentrations (0.001–0.01 g/L). SiO2 NPs show little-to-no interference with flow cytometry and Coulter counter assays, which not only were more reliable in determining cell viability and proliferation at low concentrations in vitro, but also identified changes in cell granularity and size that were not captured by the plate-based assays. At high SiO2 NP concentrations (1 g/L) all techniques indicated cytotoxicity. In conclusion, flow cytometry and Coulter counter identified new cellular features, and flow cytometry offered more flexibility in analyzing the viability and proliferation profile of SiO2 NP-treated RAW 264.7 cells.

Publisher

Hindawi Limited

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3