Influence of Sound Vibration on Diamond-Like Carbon Deposition Rate

Author:

Karim Syed Md. Ihsanul1,Chowdhury Mohammad Asaduzzaman2,Helali Md. Maksud3

Affiliation:

1. Bangladesh Industrial Technical Assistance Centre (BITAC), Ministry of Industries, Dhaka 1208, Bangladesh

2. Department of Mechanical Engineering, Dhaka University of Engineering and Technology, Gazipur 1700, Bangladesh

3. Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh

Abstract

This work examines how vapor-deposited coating of DLC (partially diamond) on stainless steel 304 substrate is affected by the sound vibration. For this, a specially designed chemical vapor deposition (thermal CVD and hot filament) apparatus having facility of generating sound vibration at different frequency is fabricated. A coating of DLC (partially diamond) has been deposited on the substrate, and the characterization of the coating has been done by SEM, EDX, and XRD. The coating of carbon is identified by EDX, and the allotropic forms of graphite and diamond peaks of carbon are found by XRD analysis. By SEM analysis, it is found that the microstructures of deposited coatings are more compact and smoother under vibration than those in absence of vibration. The experiments were conducted under different ranges of vibration including sonic and ultrasonic range. Studies have shown that the growth rate of deposited coating on a unit area is higher under vibration than that in absence of vibration. It is found that deposition rate varies with the distance between substrate and activation heater and frequency of vibration. The deposition rate does not vary significantly with the change of frequency in the sonic range. The amount of deposition under ultrasonic vibration increases significantly with the frequency of vibration upto 5-6 mm distance between substrate and activation heater. Within this distance, the difference of deposition rate under vibration and without vibration conditions increases almost linearly with the increase of frequency of vibration. Beyond this distance, the effect of frequency on deposition rate becomes almost constant. In addition, the higher the distance, the less is the effectiveness of frequency of vibration on the deposition rate in that range. The deposition rate increases due to the extra vibration of sound added to the system which may enhance the activation energy by increasing its kinetic energy. The experimental results are compared with those available in the literature, and physical explanations are provided.

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3