Thermodynamics and Oxidation Behaviour of Crystalline Silicon Carbide (3C) with Atomic Oxygen and Ozone

Author:

Varadachari Chandrika1,Bhowmick Ritabrata1,Ghosh Kunal1

Affiliation:

1. Raman Centre for Applied and Interdisciplinary Sciences, 16A Jheel Road, Calcutta 700 075, India

Abstract

Thermodynamics of oxidation of crystalline silicon carbide (cubic form) by atomic oxygen (O) and ozone (O3) was derived to understand the thermodynamic stability of SiC in the upper atmosphere. Equilibrium constants and equilibrium partial pressures were computed for each of eight possible reactions of SiC with O and O3. Equilibrium activity diagrams were derived, showing the most stable oxidation products of SiC, represented in temperature-oxygen pressure (T-PO/O3) 2D diagrams. Programs were developed in Mathematica. The diagrams provide an understanding of the oxidation routes of SiC under changing levels of O/O3 and temperature, as encountered during reentry of space vehicles. At high levels of the volatiles, CO2, CO, and SiO and temperatures between 1000 and 1500 K, oxidation by atomic oxygen or ozone first produced SiO2 + C followed by SiO2 + CO and finally SiO2 + CO2. When volatiles were at very low pressures, the sequence of oxidation was SiO + CO followed by either SiO2 + CO or SiO + CO2 and finally SiO2 + CO2. Stability of SiC in ozone was much lower than in atomic oxygen. With both oxidants, the oxidation of the Si in SiC occurred prior to the oxidation of C. Implications for mechanisms of thermal protection are discussed.

Funder

Defence Research and Development Organisation

Publisher

Hindawi Limited

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3