A Comparative Study of Optical Anisotropies of BC3 and B3C Systems by Density Functional Theory

Author:

Jana Debnarayan1,Chen Li-Chyong2,Chen Chun Wei3,Chen Kuei-Hsien24

Affiliation:

1. Department of Physics, University of Calcutta, West Bengal, Kolkata 700 009, India

2. Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan

3. Department of Material Science and Engineering, National Taiwan University, Taipei 10617, Taiwan

4. Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan

Abstract

The optical properties of (8,0) BC3 and B3C single-wall carbon nanotubes (SWCNTs) are computed using ab initio density functional theory (DFT). The electronic band structure reveals that the Fermi energy of B3C system is reduced compared to BC3. The static dielectric constant in the long wavelength limit for B3C system is 9 times larger than that of BC3 in unpolarized electromagnetic field. Within 10 eV frequency (energy) range, the absorption coefficient of B3C is higher compared to BC3, while, above 10 eV, it is less than that of BC3. In parallel polarization, the peak of the loss function for B3C is shifted to higher frequency (energy) region with significantly six orders of magnitude compared to BC3 system. The analysis of this study indicates that the optical anisotropies can be gained easily in these boron-doped systems by appropriately choosing the direction of the polarization of the electromagnetic field. Besides, the results of the loss functions may throw some light on the nature of collective excitations of these two systems.

Funder

National Science Council

Publisher

Hindawi Limited

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3