Affiliation:
1. Department of Physics, Beijing University, Beijing 100871, China
Abstract
This paper is the first to demonstrate that a pure nonphonon mechanism can quantitatively explain all isotope effect experiments in YBaCuO (YBCO) and to conclude that the influence of zero-point oscillation on the two local spin-mediated interaction (TLSMI) causes the isotope effects in YBCO. This paper is the first to calculate the doping dependence of exponents
of oxygen isotope effect for all quantities of YBCO, such as , T, pseudogap at , gap at 0 K, and number density of supercurrent carriers at 0 K. This paper points out that the observed inverse isotope effect of comes also from zero-point oscillation.