Affiliation:
1. Space Weather Research Group, Department of Industrial Physics, College of Science & Engineering, Landmark University, PMB 1001, Omu Aran, Kwara State, Nigeria
Abstract
The geoeffectiveness of some coupling functions for the Solar Wind-Magnetosphere Interaction had been studied. 58 storms with peak Dst < −100 nT were used. The result showed that the interplanetary magnetic field Bz appeared to be more relevant with the magnetic field B (which agreed with previous results). However, both the V (solar wind flow speed) and Bz factors in the interplanetary dawn-dusk electric field (V×Bz) are effective in the generation of very intense storms (peak Dst < −250 nT) while “intense” storms (−250 nT ≤ peak Dst < −100 nT) are mostly enhanced by the Bz factor alone (in most cases). The southward Bz duration BT seems to be more relevant for Dst < −250 nT class of storms and invariably determines the recovery phase duration. Most of the storms were observed to occur at midnight hours (i.e., 2100–0400 UT), having a 41.2% incidence rate, with high frequency between 2300 UT and 0000 UT. 62% of the events were generated as a result of Magnetic Cloud (MC), while 38% were generated by complex ejecta. The B-Bz relation for the magnetic cloud attained a correlation coefficient of 0.8922, while it is 0.7608 for the latter. Conclusively, Bz appears to be the most geoeffective factor, and geoeffectiveness should be a factor that depends on methods of event identification and classification as well as the direction of event correlation.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献