On the Geoeffectiveness Structure of Solar Wind-Magnetosphere Coupling Functions during Intense Storms

Author:

Adebesin B. Olufemi1,Ikubanni S. Oluwole1,Kayode J. Stephen1

Affiliation:

1. Space Weather Research Group, Department of Industrial Physics, College of Science & Engineering, Landmark University, PMB 1001, Omu Aran, Kwara State, Nigeria

Abstract

The geoeffectiveness of some coupling functions for the Solar Wind-Magnetosphere Interaction had been studied. 58 storms with peak Dst < −100 nT were used. The result showed that the interplanetary magnetic field Bz appeared to be more relevant with the magnetic field B (which agreed with previous results). However, both the V (solar wind flow speed) and Bz factors in the interplanetary dawn-dusk electric field (V×Bz) are effective in the generation of very intense storms (peak Dst < −250 nT) while “intense” storms (−250 nT ≤ peak Dst < −100 nT) are mostly enhanced by the Bz factor alone (in most cases). The southward Bz duration BT seems to be more relevant for Dst < −250 nT class of storms and invariably determines the recovery phase duration. Most of the storms were observed to occur at midnight hours (i.e., 2100–0400 UT), having a 41.2% incidence rate, with high frequency between 2300 UT and 0000 UT. 62% of the events were generated as a result of Magnetic Cloud (MC), while 38% were generated by complex ejecta. The B-Bz relation for the magnetic cloud attained a correlation coefficient of 0.8922, while it is 0.7608 for the latter. Conclusively, Bz appears to be the most geoeffective factor, and geoeffectiveness should be a factor that depends on methods of event identification and classification as well as the direction of event correlation.

Publisher

Hindawi Limited

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3