Numerical Solution of the MHD Reynolds Equation for Squeeze-Film Lubrication between Porous and Rough Rectangular Plates

Author:

Kudenatti Ramesh B.1,Murulidhara N.2,Patil H. P.3

Affiliation:

1. Department of Mathematics, Bangalore University, Bangalore 560 001, India

2. Department of Mathematics, Sri Siddhartha Institute of Technology, Tumkur 572 105, India

3. Department of Mathematics, Siddaganga Institute of Technology (SIT), Tumkur 572 103, India

Abstract

The present theoretical study investigates the effects of surface roughness and couple-stress fluid between two rectangular plates, of which an upper rough plate has a roughness structure and the lower plate has a porous material in the presence of transverse magnetic field. The lubricant in the gap is taken to be a viscous, incompressible, and electrically conducting couple-stress fluid. This gap is separated by a film thickness H which is made up of nominal smooth part and rough part. The modified Reynolds equation in the film region is derived for one-dimensional longitudinal roughness structure and solved numerically using multigrid method. The numerical results for various physical parameters are discussed in terms of pressure distribution, load capacity, and squeeze film time of the bearing surfaces. Our results show that, the pressure distribution, load capacity and squeeze film time are predominant for larger values of Hartman number and roughness parameter, and for smaller values of couple-stress parameters when compared to their corresponding classical cases.

Publisher

Hindawi Limited

Subject

General Health Professions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3