Electrochemical Study of the Corrosion Behavior of Zinc Surface Treated with a New Organic Chelating Inhibitor

Author:

Prabhu R. A.1,Venkatesha T. V.2,Praveen B. M.3

Affiliation:

1. Department of Chemistry, M.G.C. Arts, Commerce and G.H.D. Science College, Karnataka Siddapur 581 355, India

2. Department of P.G. Studies and Research in Chemistry, Kuvempu University, Karnataka Shankaraghatta 577451, India

3. Department of Chemistry, Srinivas School of Engineering, Mukka, Karnataka Mangalore 575 021, India

Abstract

The effect of a new organic compound (N-[(1E)-(4 methoxy phenyl)methylene]hydrazinecarbothioamide), called ATSC, with chelating groups, on the corrosion behavior of zinc was investigated. Electrochemical study of the zinc specimens was carried out in aqueous electrolyte containing 0.2 M Na2SO4 and 0.2 M NaCl maintained at pH 5 using galvanostatic polarization curves. The surface treatment of zinc was achieved by immersion in solutions of different concentrations of ATSC and for different immersion time and bath temperatures. The zinc metal treated with ATSC at 5% has showed good corrosion resistance and maximum protection efficiency of about 84% at 300 K. Moreover, the treatment induced a basic modification of the cathodic nature of zinc and controls the corrosion by decreasing the electron transfer rate. The corrosion protection could be explained by the formation of a protective organometallic layer on the zinc surface due to the chelation reaction between zinc and inhibitor molecules. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) were applied to study the protective layer.

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Metals and Alloys,Strategy and Management,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3