Effect of Welding Parameters on the Peak Load and Energy Absorption of Low-Carbon Steel Resistance Spot Welds

Author:

Pouranvari M.1

Affiliation:

1. Materials and Metallurgical Engineering Department, Dezful Branch, Islamic Azad University, 64616-45169 Dezful, Iran

Abstract

Effect of process variables (electrode pressure, holding time, welding current, and welding time) on low-carbon steel resistance spot welds performance has been investigated in this paper. Failure mode, peak load, and maximum energy obtained in tensile-shear test have been used to describe spot welds performance. Excessive electrode pressure can reduce both peak load and maximum energy, considerably. Holding time does not significantly affect peak load and maximum energy for investigated material. Increasing welding time and welding current to some extent increases both peak load and maximum energy. However, excessive welding time and welding current not only do not increase weld nugget size and peak load, but also decrease maximum energy.

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Resistance Spot Welding Weld Quality;New Materials, Processing and Manufacturability;2024-07-25

2. Nugget and corona bond size measurement through active thermography and transfer learning model;The International Journal of Advanced Manufacturing Technology;2024-07-10

3. Influences of the resistance spot welding parameters on the joint strength of AISI 1006;AIP Conference Proceedings;2024

4. Frequency-based analysis of active laser thermography for spot weld quality assessment;The International Journal of Advanced Manufacturing Technology;2023-12-27

5. Mechanical behavior investigation for quenching and partitioning steel dissimilar resistance spot welds;Journal of Materials Research and Technology;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3