Isoflurane Enhances the Moonlighting Activity of GAPDH: Implications for GABAA Receptor Trafficking

Author:

Montalbano Andrew J.1,Theisen Christopher S.2,Fibuch Eugene E.1,Seidler Norbert W.2

Affiliation:

1. Department of Anesthesiology, University of Missouri-Kansas City/Saint Luke’s Hospital, 4401 Wornall Road, Kansas City, MO 64111, USA

2. Department of Biochemistry, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO 64106, USA

Abstract

GABAA receptor activity is directly modulated by glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a protein with many nonglycolytic moonlighting functions. In addition to playing a role in the phosphorylation of the receptor, GAPDH may also participate in proper receptor trafficking to the plasma membrane. We previously showed that volatile anesthetics affect GAPDH structure and function that may contribute to the manner by which GAPDH modulates the GABAA receptor. In the current study, GAPDH interacted with engineered phospholipid-containing vesicles, preferring association with phosphatidylserine over phosphatidylcholine. Phosphatidyl-serine is known to participate in membrane trafficking of transport proteins and to play a role in GABAA receptor stability and function. We observed that GAPDH promoted the self-association and fusion of phosphatidyl-serine-rich vesicles as well as decreased membrane fluidity. Isoflurane enhanced each of these GAPDH-mediated events. Isoflurane also increased the binding of GAPDH to the cytoplasmic loop of the GABAA receptor. These observations are consistent with the working model of isoflurane playing a role in the trafficking of membrane proteins. This study is the first to implicate GAPDH and isoflurane in the regulation of GABAA receptor localization, providing insight into the mechanism of action of anesthesia.

Funder

Kansas City University of Medicine and Biosciences

Publisher

Hindawi Limited

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Architectural Topography of the α-Subunit Cytoplasmic Loop in the GABAA Receptor;Emerging Trends in Applications and Infrastructures for Computational Biology, Bioinformatics, and Systems Biology;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3