Effect of Plasma Surface Pretreatment on Ce3+-Doped GPTMS-ZrO2 Self-Healing Coatings on Aluminum Alloy

Author:

Kumar N.1ORCID,Jyothirmayi A.2ORCID,Subasri R.1ORCID

Affiliation:

1. Centre for Sol-Gel Coatings, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Andhra Pradesh, Hyderabad 500005, India

2. Centre for Mechanical and Chemical Characterization, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Andhra Pradesh, Hyderabad 500005, India

Abstract

A hybrid sol synthesized from an acid-catalyzed hydrolysis and condensation reaction of 3-glycidoxypropyltrimethoxysilane (GPTMS) and zirconium n-propoxide was used as a matrix nanocomposite sol. To this sol, 0.01 M Ce3+ was added as an inhibitor to provide a self-healing coating system. The effect of an atmospheric air plasma surface pretreatment of aluminum alloy substrates prior to coating deposition of Ce3+-doped/undoped GPTMS-ZrO2 sol was studied with respect to corrosion protection. Coatings were generated by a dip coating technique employing a withdrawal speed of 5 mm/s and thermally cured at 130° C for 1 h. The coated Al surfaces were characterized using potentiodynamic polarization studies and electrochemical impedance spectroscopy. They were also subjected to accelerated corrosion testing using neutral salt spray test with 5% NaCl solution after creating an artificial scratch for more than 200 hours to assess the self-healing ability of coatings. It was observed that cerium (III) doping was effective for corrosion protection during long-term exposure to the electrolyte solution, and a plasma surface pretreatment of substrates prior to coating deposition of Ce3+-doped coatings improved the adhesion of coatings that provides enhanced corrosion protection along with self-healing ability exhibited in case of damages/scratches caused in the coating.

Publisher

Hindawi Limited

Subject

Pharmacology (medical)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3