A Method for the In Vivo Measurement of Zebrafish Tissue Neutrophil Lifespan

Author:

Dixon Giles1,Elks Philip M.1,Loynes Catherine A.1,Whyte Moira K. B.12,Renshaw Stephen A.12

Affiliation:

1. MRC Centre for Developmental and Biomedical Genetics, University of Sheffield School of Medicine, Sheffield S10 2RX, UK

2. Department of Infection and Immunity, University of Sheffield, Sheffield, UK

Abstract

Neutrophil function is thought to be regulated, in large part, by limitation of lifespan by apoptosis. A number of studies suggest that circulating neutrophils have a half-life of approximately 6 hours, although contradictory evidence exists. Measuring tissue neutrophil lifespan, however, is more problematic. It is thought that tissue neutrophils survive longer, perhaps with a half-life in the order of 3–5 days, but this has never been directly measured. Zebrafish are an emerging model organism, with several advantages for the study of vertebrate immunity. In zebrafish, neutrophils constitutively assume tissue locations allowing their direct study in vivo. Using a transgenic approach, neutrophils were labelled with a photoconvertible pigment, Kaede. Photoconversion parameters were optimised and the stability of the Kaede confirmed. Individual neutrophils were photoconverted by scanning a confocal 405 nm laser specifically over each cell and their survival monitored for 48 hours, revealing an in vivo half-life for zebrafish tissue neutrophils of around 120 hours (117.7 hrs, 95% CI 95.67–157.8). Laser energy did not extend neutrophil lifespan, and we conclude that this represents a lower bound for the lifespan of a resting tissue neutrophil in the developing zebrafish larva. This is the first direct measurement of the lifespan of an in vivo tissue neutrophil.

Funder

Wellcome Trust

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3