From the Human Spine to Hyperredundant Robots: The ERMIS Mechanism

Author:

Georgilas Ioannis1ORCID,Tourassis Vassilios2ORCID

Affiliation:

1. Bristol Robotics Laboratory, University of Bristol and University of the West of England, T Block, Frenchay Campus, Bristol BS16 1QY, UK

2. Department of Robotics and Mechatronics, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan

Abstract

Mechatronics are occasionally inspired by nature for joint designs in order to exploit the advantages of the biological ones in terms of mobility and articulation. Within this context and based upon the human spine for structure and actuation, the authors will present a novel hyperredundant mechanism, named ERMIS. The muscle-skeletal system of the human trunk will be described and modelled, and the elements that are being replicated by the mechanical analog will be analysed. It will be shown that the vertebrae-intervertebral disk arrangement can be emulated by a spherical-type configuration, the proposed Disk-Ball-Disk joint. Furthermore, the muscle actuation system is being recreated by a system of wires and pulleys. The relevant kinematic models will be developed, and both simulation and experimental data to evaluate its operation will be demonstrated.

Publisher

Hindawi Limited

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3