Gravitational Instability of Rotating Viscoelastic Partially Ionized Plasma in the Presence of an Oblique Magnetic Field and Hall Current

Author:

El-Sayed M. F.1,Mohamed R. A.2

Affiliation:

1. Department of Mathematics, Faculty of Education, Ain Shams University, Heliopolis, Roxy, Cairo 11757, Egypt

2. Department of Physics, Faculty of Education, Ain Shams University, Heliopolis, Roxy, Cairo 11757, Egypt

Abstract

The gravitational instability of a rotating Walters B viscoelastic partially ionized plasma permeated by an oblique magnetic field has been investigated in the presence of the effects of Hall currents, electrical resistivity, and ion viscosity. The dispersion relation and numerical calculations have been performed to obtain the dependence of the growth rate of the gravitational unstable mode on the various physical effects. It is found that viscosity and collision frequency of plasma have stabilizing effects, while viscoelasticity and angular frequency of rotation have destabilizing effect; the electrical resistivity has a destabilizing effect only for small wavenumbers; the density of neutral particles and the magnetic field component in z-direction have stabilizing effects for wavenumbers ranges k<5 and k<10, respectively; the Hall current has a slightly destabilizing effect. Finally, the inclination angle to z-direction has a destabilizing effect to all physical parameters.

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3