Affiliation:
1. Division of Surface and Corrosion Science, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Drottning Kristinas väg 51, 100 44 Stockholm, Sweden
Abstract
Chromium carbide (Cr-C) and chromium nitride (Cr-N) powders were compared with a chromium metal powder (Cr-metal) to evaluate their chemical stability in solution. All three powders were exposed in five different synthetic biological solutions of varying pH and chemical composition simulating selected human exposure conditions. Characterisation of the powders, using GI-XRD, revealed that the predominant bulk crystalline phases were Cr7C3 and Cr2N for Cr-C and Cr-N respectively. The outermost surface of Cr-C, determined by XPS, contained Cr7C3 and Cr2O3 and the corresponding measurement on Cr-N revealed Cr2N and CrN apart from Cr2O3. The presence of Cr2O3 was verified by XPS investigations of the Cr-metal powder. The mean particle size was similar for Cr-metal and Cr-N but slightly smaller for Cr-C. All three powders were poorly soluble and released very low amounts of chromium (<0.00015 μg Cr/μg loaded particles) independent on test solution. Slightly higher chromium concentrations were determined in the more acidic media (pH 1.7 and 4.5) compared with the near-neutral solutions (pH 7.2 and 7.4). Cr-C released the lowest amount of Cr despite having the largest surface area a feature attributed to the strong covalent bonds within the matrix.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献