Performance of Magnetic-Fluid-Based Squeeze Film between Longitudinally Rough Elliptical Plates

Author:

Andharia P. I.1,Deheri G. M.2

Affiliation:

1. Department of Mathematics, M. K. Bhavnagar University, Bhavnagar, Gujarat 364002, India

2. Department of Mathematics, S. P. University, Vallabh Vidyanagar, Gujarat 388120, India

Abstract

An attempt has been made to analyze the performance of a magnetic fluid-based-squeeze film between longitudinally rough elliptical plates. A magnetic fluid is used as a lubricant while axially symmetric flow of the magnetic fluid between the elliptical plates is taken into consideration under an oblique magnetic field. Bearing surfaces are assumed to be longitudinally rough. The roughness of the bearing surface is characterized by stochastic random variable with nonzero mean, variance, and skewness. The associated averaged Reynolds’ equation is solved with appropriate boundary conditions in dimensionless form to obtain the pressure distribution leading to the calculation of the load-carrying capacity. The results are presented graphically. It is clearly seen that the magnetic fluid lubricant improves the performance of the bearing system. It is interesting to note that the increased load carrying capacity due to magnetic fluid lubricant gets considerably increased due to the combined effect of standard deviation and negatively skewed roughness. This performance is further enhanced especially when negative variance is involved. This paper makes it clear that the aspect ratio plays a prominent role in improving the performance of the bearing system. Besides, the bearing can support a load even when there is no flow.

Publisher

Hindawi Limited

Subject

General Health Professions

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3