Author:
Fathipour Azar Hadi,Saksala Timo,Jalali Seyed-Mohammad Esmaiel
Abstract
Prediction of the rate of penetration (ROP) is an important task in drilling economical assessments of mining and construction projects. In this paper, the predictability of the ROP for percussive drills was investigated using the artificial neural networks (ANNs) and the linear multivariate regression analysis. The “power pack” frequency, the revolution per minute (RPM), the feed pressure, the hammer frequency, and the impact energy were considered as input parameters. The results indicate that the ANN with the regression model predicts the ROP under different conditions with high accuracy. It also demonstrates that the ANN approach is a beneficial tool that can reduce cost, time and enhance structure reliability.
Subject
Mechanical Engineering,Mechanics of Materials
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献