Affiliation:
1. ONDOKUZ MAYIS ÜNİVERSİTESİ
2. TRAKYA UNIVERSITY
Abstract
In this paper, the structures of the linear codes over a family of the rings $A_{t}=Z_{4}\left[ u_{1},\ldots ,u_{t}\right] \left/ \left\langle u_{i}^{2}-u_{i},u_{i}u_{j}-u_{j}u_{i}\right\rangle \right. $ are given, where $i,j=1,2,\ldots ,t$, $i\neq j$, $Z_{4}=\{0,1,2,3\}$. A map between the elements of the $A_{t}$ and the alphabet $\left\{ A,T,C,G\right\} ^{2^{t}}$ is constructed. The DNA codes are obtained with three different methods, by using the cyclic, skew cyclic codes over a family of the rings $A_{t}$ and $\theta _{i}$-set, where $\theta _{i}$ is a non trivial automorphism on $A_{i}$, for $i=1,2,\ldots ,t$.
Publisher
Mathematical Sciences and Applications E-Notes
Reference9 articles.
1. [1] Yildiz, B., Siap, I.: Cyclic codes over $F_{2}[u]/(u^{4}-1)$ and applications to DNA codes. Computers Mathematics with
Applications. 63(7), 1169-1176 (2012).
2. [2] Cengellenmis Y., Dertli A.: On the reversibility problem for DNA 4-bases. Erzincan University Journal of Science
and Technology. 13(3), 1383-1388 (2020).
3. [3] Zhu, S., Chen, X.: Cyclic DNA codes over $F_{2}+uF_{2}+vF_{2}+uvF_{2}$ and their applications. Journal of Applied
Mathematics and Computing. 55(1), 479-493 (2017).
4. [4] Benbelkacem, N., Ezerman, M. F., Abualrub, T., Aydin, N., Batoul, A.: Skew cyclic codes over $F_{4}R$. Journal of
Algebra and Its Applications. 21(4), 2250065 (2020).
5. [5] Bennenni, N., Guenda, K., Mesnager, S.: New DNA cyclic codes over rings. Preprint arxiv:1505.06263 (2015).