Abstract
In this paper, we consider a Kirchhoff-type viscoelastic equation with degenerate damping term have initial and Dirichlet boundary conditions. We obtain the blow up and exponential growth of solutions with negative initial energy.
Publisher
Mathematical Sciences and Applications E-Notes
Reference30 articles.
1. [1] Barbu, V., Lasiecka, I., Rammaha, M. A.: Existence and uniqueness of solutions to wave equations with nonlinear
degenerate damping and source terms. Control Cybernetics. 34(3), 665-687 (2005).
2. [2] Nishihara, K., Yamada, Y.: On global solutions of some degenerate quasilinear hyperbolic equations with dissipative
terms. Funkcialaj Ekvacioj. 33, 151-159 (1990).
3. [3] Ikehata, R., Matsuyama, T.: On global solutions and energy decay for the wave equations of Kirchhoff type with
nonlinear damping terms. Journal of Mathematical Analysis and Applications. 204, 729-753 (1996).
4. [4] Ono, K.: Global existence, decay, and blow-up of solutions for some mildly degenerate nonlinear Kirchhoff strings.
Journal of Differential Equations. 137, 273-301 (1997).
5. [5] Taniguchi, T.: Existence and asymptotic behaviour of solutions to weakly damped wave equations of Kirchhoff type with
nonlinear damping and source terms. Journal of Mathematical Analysis and Applications. 361(2), 566-578 (2010).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献