Affiliation:
1. Tekirdağ Namık Kemal Üniversitesi
Abstract
In this work, we characterize some rings in terms of dual self-CS-Baer modules (briefly, dsCS-Baer modules). We prove that any ring $\Sigma$ is a left and right artinian serial (briefly, as-) ring with $J^2=0$ iff $\Sigma\oplus Z$ is dsCS-Baer for every right $\Sigma$-module $Z$. If $\Sigma$ is a commutative ring, then we prove that $\Sigma$ is an as-ring iff $\Sigma$ is perfect and every $\Sigma$-module is a direct sum of (cyclic) dsCS-Baer $\Sigma$-modules. Also, we show that $\Sigma$ is a right perfect ring iff all countably generated free right $\Sigma$-modules are dsCS-Baer.
Publisher
Mathematical Sciences and Applications E-Notes
Reference11 articles.
1. [1] Clark, J., Lomp, C., Vanaja, N., Wisbauer, R.: Lifting Modules: Supplements and Projectivity in Module Theory.
Frontiers in Mathematics, Birkhäuser (2006).
2. [2] Mohamed, S. H., Müller, B. J.: Continuous and Discrete Modules. London Mathematical Society Lecture Note
Series, Vol. 147, Cambridge University Press (1990).
3. [3] Crivei, S., Keskin Tütüncü, D., Radu, S. M., Tribak, R.: CS-Baer and dual CS-Baer objects in abelian categories.
Journal of Algebra and Its Applications. 22(10), 2350220 (2023).
4. [4] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules. 2nd edition, Springer-Verlag, New York (1992).
5. [5] Crivei, S., Radu, S. M.: CS-Rickart and dual CS-Rickart objects in abelian categories. Bulletin of Belgian Mathematical Society-Simon Stevin. 29(1), 99–122 (2022).