BOTNET DETECTION USING INDEPENDENT COMPONENT ANALYSIS

Author:

Ibrahim Wan NurhidayahORCID,Anuar Mohd Syahid,Selamat AliORCID,Krejcar OndrejORCID

Abstract

Botnet is a significant cyber threat that continues to evolve. Botmasters continue to improve the security framework strategy for botnets to go undetected. Newer botnet source code runs attack detection every second, and each attack demonstrates the difficulty and robustness of monitoring the botnet. In the conventional network botnet detection model that uses signature-analysis, the patterns of a botnet concealment strategy such as encryption & polymorphic and the shift in structure from centralized to decentralized peer-to-peer structure, generate challenges. Behavior analysis seems to be a promising approach for solving these problems because it does not rely on analyzing the network traffic payload. Other than that, to predict novel types of botnet, a detection model should be developed. This study focuses on using flow-based behavior analysis to detect novel botnets, necessary due to the difficulties of detecting existing patterns in a botnet that continues to modify the signature in concealment strategy. This study also recommends introducing Independent Component Analysis (ICA) and data pre-processing standardization to increase data quality before classification. With and without ICA implementation, we compared the percentage of significant features. Through the experiment, we found that the results produced from ICA show significant improvements.  The highest F-score was 83% for Neris bot. The average F-score for a novel botnet sample was 74%. Through the feature importance test, the feature importance increased from 22% to 27%, and the training model false positive rate also decreased from 1.8% to 1.7%. ABSTRAK: Botnet merupakan ancaman siber yang sentiasa berevolusi. Pemilik bot sentiasa memperbaharui strategi keselamatan bagi botnet agar tidak dapat dikesan. Setiap saat, kod-kod sumber baru botnet telah dikesan dan setiap serangan dilihat menunjukkan tahap kesukaran dan ketahanan dalam mengesan bot. Model pengesanan rangkaian botnet konvensional telah menggunakan analisis berdasarkan tanda pengenalan bagi mengatasi halangan besar dalam mengesan corak botnet tersembunyi seperti teknik penyulitan dan teknik polimorfik. Masalah ini lebih bertumpu pada perubahan struktur berpusat kepada struktur bukan berpusat seperti rangkaian rakan ke rakan (P2P). Analisis tingkah laku ini seperti sesuai bagi menyelesaikan masalah-masalah tersebut kerana ianya tidak bergantung kepada analisis rangkaian beban muatan trafik. Selain itu, bagi menjangka botnet baru, model pengesanan harus dibangunkan. Kajian ini bertumpu kepada penggunaan analisa tingkah-laku berdasarkan aliran bagi mengesan botnet baru yang sukar dikesan pada corak pengenalan botnet sedia-ada yang sentiasa berubah dan menggunakan strategi tersembunyi. Kajian ini juga mencadangkan penggunakan Analisis Komponen Bebas (ICA) dan pra-pemprosesan data yang standard bagi meningkatkan kualiti data sebelum pengelasan. Peratusan ciri-ciri penting telah dibandingkan dengan dan tanpa menggunakan ICA. Dapatan kajian melalui eksperimen menunjukkan dengan penggunaan ICA, keputusan adalah jauh lebih baik. Skor F tertinggi ialah 83% bagi bot Neris. Purata skor F bagi sampel botnet baru adalah 74%. Melalui ujian kepentingan ciri, kepentingan ciri meningkat dari 22% kepada 27%, dan kadar positif model latihan palsu juga berkurangan dari 1.8% kepada 1.7%.

Publisher

IIUM Press

Subject

Applied Mathematics,General Engineering,General Chemical Engineering,General Computer Science

Reference46 articles.

1. Ibrahim, W.N.H., Selamat, A., Anuar, S., & Krejcar, O. (2019). Clustering botnet behavior using K-means with uncertain data, Frontiers in Artificial Intelligence and Applications vol. 318. pp.244–257.

2. Liang, X. & Znati, T. (2019). On the performance of intelligent techniques for intensive and stealthy DDos detection, Computer Networks vol. 164. p.106906.

3. Gross, G. (2016). Detecting and destroying botnets, Network Security vol. 2016, no. 3. pp.7–10.

4. WHITE OPS. (2018). Retrieved June 1, 2020, https://www.whiteops.com/blog/9-of-the-most-notable-botnets.

5. Kolias, C., Kambourakis, G., Stavrou, A., & Voas, J. (2017). DDoS in the IoT: Mirai and other botnets, Computer vol. 50, no. 7. pp.80–84.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3