Building a GIS Map for Forecasting the MIR Index in An Giang

Author:

Doan Thanh-NghiORCID,Nguyen Khanh Tran Thien

Abstract

The MIR aquatic plant signal is capable of predicting specific pollution sources of water, contributing significantly to the effective management of surface water resources in An Giang province. The use of aquatic plants in water pollution treatment brings about positive effects through natural self-purification processes as they consume organic and nutrient substances such as N and P. Therefore, it is crucial to develop a tool for monitoring and supervising aquatic plant species. This paper investigates the application of GIS technology to build a GIS map representing the current status of vegetation cover in An Giang province. The background layers of the GIS database, along with detailed attribute layers regarding species composition, dominant species, and vegetation area, will serve as the basis for managing, utilizing, conserving, and restoring vegetation cover in the research area. Additionally, a predictive model for MIR indices has been constructed using machine learning methods. The results indicate that the model has a coefficient of determination (R2) of 91.7% for the dependent variable MIR compared to the independent variables. Subsequently, these results are visually displayed on a GIS map at 18 monitoring points within An Giang province, enabling users to easily observe, compare, evaluate, and propose suitable solutions for surface water quality management. ABSTRAK: Isyarat tumbuhan akuatik MIR mampu meramalkan sumber pencemaran air secara spesifik, iaitu penyumbang penting kepada pengurusan berkesan permukaan sumber air di wilayah An Giang. Penggunaan tumbuhan akuatik dalam rawatan pencemaran membawa kepada kesan positif melalui proses rawatan kendiri secara semula jadi kerana ia mengandungi bahan organik dan nutrien seperti N dan P. Oleh itu, sangat penting bagi membangunkan alat pemantauan dan pengawasan spesies tumbuhan akuatik. Kajian ini mengkaji aplikasi teknologi GIS bagi membangunkan peta GIS mewakili status terkini keseluruhan tumbuhan di wilayah An Giang. Lapisan latar belakang pangkalan data GIS bersama lapisan sifat-sifat terperinci berkenaan spesies komposit, spesies dominan, dan kawasan tumbuh-tumbuhan, dapat menyediakan asas kepada pengurusan, penggunaan, pemuliharaan, dan pemulihan tumbuh-tumbuhan meliputi kawasan kajian.  Tambahan, model ramalan MIR dibangunkan menggunakan kaedah pembelajaran mesin. Dapatan kajian menunjukkan model ini mempunyai pekali penentu (R2) sebanyak 91.7% bagi pembolehubah MIR bersandar berbanding pembolehubah tak bersandar. Menyebabkan dapatan ini secara visual dapat dilihat pada peta GIS menggunakan 18 titik pantauan dalam wilayah An Giang province, membolehkan pengguna mudah melihat, membandingkan, menilai, dan mencadangkan solusi sesuai bagi pengurusan kualiti permukaan air.

Publisher

IIUM Press

Reference34 articles.

1. An Giang Center for Environmental Monitoring and Techniques Resources. (2019) Report on results of environmental monitoring in An Giang province November, 2019, People’s Committee of An Giang province

2. Nguyen, K.; Yoshiaki, K.; Xiao, L.; Endo, R.; Shibuya, T. (2015) Microalgae Culture with Digestate from Methane Fermentation, Eco-Engineering, Vol. 27, No. 1, 7–11. doi:10.11450/seitaikogaku.27.7

3. People’s Committee of An Giang province. (2019). An Giang Department of Natural Resources and Environment. (2020). Report on environmental status of An Giang province in the period 2016-2020.

4. Nguyen, V. P.; Nguyen, K. T. T.; Ton, L. T.; Nguyen, D. T.; Nguyen, K. Q.; Vu, M. T.; Tran, H. N. (2020) Dual-Electronic Nanomaterial (Synthetic Clay) for Effective Removal of Toxic Cationic and Oxyanionic Metal Ions from Water, Journal of Nanomaterials, Vol. 2020, 1783749. doi:10.1155/2020/1783749

5. An Giang province monitoring center. (2019) Report on environmental monitoring results of An Giang province

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3