Control Strategy for Power Assist Upper Limb Rehabilitation Robot with the Therapist’s Motion Intention Prediction
-
Published:2023-01-04
Issue:1
Volume:24
Page:285-300
-
ISSN:2289-7860
-
Container-title:IIUM Engineering Journal
-
language:
-
Short-container-title:IIUMEJ
Author:
Adeola-Bello Zulikha AyomikunORCID, AZLAN NORSINNIRA ZAINUL, ABU HASSAN SALMAH ANIMORCID
Abstract
Currently, fully automated rehabilitation robots can assist therapists in providing rehabilitation therapy, hence the patients could get hurt. On the other hand, manual treatment may cause less patient injury but it is tiresome, and there are not enough therapists in most countries. Power assist rehabilitation robots can support the therapists in conducting the treatment and may help to alleviate this problem. The goal of this study is to develop a control strategy for the robot to assist the therapist’s movement in a power assist upper limb rehabilitation treatment. The system combines the advantages of robotic and manual rehabilitation therapy. Torque and position sensors fitted on the power assist upper limb rehabilitation robot arm are used for motion intention estimation. The amount of angular velocity necessary to be delivered to the feedback controller will be determined by predicting the therapist‘s motion intention using the impedance control method. The resulting velocity from the motion intention estimator is incorporated into the Sliding Mode Control - Function Approximation Technique (SMC-FAT) based adaptive controller. The SMC-FAT based adaptive controller in the feedback loop, overcomes the uncertain parameters in the combination of the robot and the human arm. The motion intention estimator forecasts the movement of therapists. The proposed controller is used to regulate elbow flexion and extension motion on a power assist upper limb rehabilitation robot with one degree of freedom (DOF). The proposed control system has been tested using MATLAB simulation and hardware experimental tests. The outcomes demonstrate the effectiveness of the proposed controller in directing the rehabilitation robot to follow the desired trajectory based on the therapist's motion intention, with maximum errors of 0.002rad/sec, 0.005rad/sec and 0.02rad/sec for sinusoidal, constant torque values, and hardware experiment respectively.
ABSTRAK: Pada masa ini, robot rehabilitasi automatik sepenuhnya dapat membantu ahli terapi dalam menyediakan terapi pemulihan, tetapi pesakit berkemungkinan tercedera. Sebaliknya, rawatan manual berkemungkinan mengurangkan kecederaan pesakit tetapi ia memenatkan, dan terdapat kurang ahli terapi yang mencukupi di kebanyakan negara. Robot pembantu rehabilitasi dapat membantu ahli terapi dalam menjalankan pemulihan dan mengurangkan masalah ini. Sistem ini menggabungkan kelebihan terapi pemulihan robotik dan manual. Alat pengesan tork dan kedudukan diletakkan pada anggota atas lengan robot rahabilitasi yang digunakan bagi mengesan anggaran jarak pergerakan ahli terapi. Anggaran halaju sudut diperlukan bagi kawalan gerak balas dan dapat diketahui melalui anggaran niat gerakan ahli terapi menggunakan kaedah kawalan impedans. Halaju yang terhasil daripada anggaran niat gerakan diadaptasi ke dalam pengawal adaptif berasaskan Kawalan Mod Gelongsor - Teknik Anggaran Fungsi (SMC-FAT). Pengawal penyesuaian berasaskan SMC-FAT dalam gelung maklum balas, mengatasi parameter yang tidak pasti dalam gabungan robot dan lengan manusia. Penganggar niat gerakan meramalkan gerakan ahli terapi. Pengawal yang dicadangkan digunakan bagi mengawal lenturan siku dan gerakan lanjutan pada robot rehabilitasi dengan satu darjah kebebasan (DOF). Sistem kawalan yang dicadangkan telah diuji menggunakan simulasi MATLAB dan ujian eksperimen perkakasan. Dapatan kajian menunjukkan keberkesanan pengawal yang dicadangkan dalam mengarahkan robot rehabilitasi mengikut trajektori yang dikehendaki berdasarkan niat gerakan ahli terapi, dengan ralat maksimum masing-masing 0.002rad/s dan 0.005rad/s bagi sinusoidal, nilai tork malar, dan eksperimen perkakasan masing-masing.
Subject
Applied Mathematics,General Engineering,General Chemical Engineering,General Computer Science
Reference25 articles.
1. Eiammanussakul, T., and Sangveraphunsiri, V. (2018). A lower limb rehabilitation robot in sitting position with a review of training activities. Journal of Healthcare Engineering, 2018, 1–18. 2. Bogue, R. (2018). Rehabilitation robots. Industrial Robot, 45(3), 301–306. 3. Alrabghi, L., Alnemari,R., Aloteebi, R., Alshammari, H., Ayyad, M., Al Ibrahim,M., Alotayfi, M., Bugshan, T., Alfaifi, A., and Aljuwayd, H. (2018). Stroke types and management. International Journal Of Community Medicine And Public Health, 5(9), 3715. 4. Tang, Z., Zhang, K., Sun, S., Gao, Z., Zhang, L., and Yang, Z. (2014). An upper-limb power-assist exoskeleton using proportional myoelectric control. Sensors (Switzerland), 14(4), 6677–6694. 5. Kadota, K., Akai, M., Kawashima, K., and Kagawa, T. (2009). Development of power-assist robot arm using pneumatic rubber muscles with a balloon sensor. Proceedings - IEEE International Workshop on Robot and Human Interactive Communication, 546–551.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|