EMG BASED CONTROL OF WRIST EXOSKELETON
-
Published:2023-07-04
Issue:2
Volume:24
Page:391-406
-
ISSN:2289-7860
-
Container-title:IIUM Engineering Journal
-
language:
-
Short-container-title:IIUMEJ
Author:
KARIS MOHD SAFIRIN,KASDIRIN HYREIL ANUAR,ABAS NORAFIZAH,MOHD SAAD WIRA HIDAYAT,MOHD ARAS MOHD SHAHRIEEL
Abstract
The significance of human motion intentions in a designed exoskeleton wrist control hand is essential for stroke survivors, thus making EMG signals an integral part of the overall system is critically important. However, EMG is a nonlinear signal that is easily influenced by several errors from its surroundings and certain of its applications require close monitoring to provide decent outcomes. Hence, this paper proposes to establish the relationship between EMG signals and wrist joint angle to estimate the desired wrist velocity. Fuzzy logic has been selected to form a dynamic modelling of wrist movement for a single muscle at different MVC levels and double muscles at a similar MVC level. The physical model of the exoskeleton hand using Simmechanics Matlab software has been developed to validate the performance of the fuzzy logic output result from both dynamic modelling approaches. A PID controller has been developed to smooth the exoskeleton hand movement fluctuations caused by the fuzzy logic decision-making process. As a conclusion, results showed a strong relationship between EMG signals and wrist joint angle improved the estimation results of desired wrist velocity for both dynamic modelling approaches hence strengthened the prediction process by providing a myoelectronic control device for the exoskeleton hand.
ABSTRAK: Kepentingan dalam mengetahui kehendak gerakan pergelangan tangan manusia adalah penting untuk pesakit strok yang terselamat, justeru menjadikan isyarat EMG amat penting pada keseluruhan sistem. Walau bagaimanapun, EMG adalah isyarat tidak linear yang mudah dipengaruhi ralat sekitaran dan memerlukan pemantauan rapi bagi hasil yang baik. Oleh itu, kajian ini mencadangkan kewujudan hubungan antara isyarat EMG dan sudut sendi pergelangan tangan bagi menganggarkan halaju pergelangan tangan yang dikehendaki. Logik kabur (fuzzy logic) telah dipilih bagi membentuk model dinamik pergerakan pergelangan tangan pada otot tunggal di tahap MVC yang berbeza dan otot berganda pada tahap MVC yang serupa. Model fizikal rangka luar tangan menggunakan perisian Matlab Simmekanik telah dibangunkan bagi mengesahkan prestasi Logik Kabur daripada kedua-dua pendekatan model dinamik. Pengawal PID telah dibangunkan bagi melicinkan gerakan turun naik tangan yang disebabkan proses membuat keputusan oleh Logik Kabur. Sebagai kesimpulan, dapatan kajian menunjukkan hubungan yang kukuh antara isyarat EMG dan sudut sendi pergelangan tangan. Ini meningkatkan anggaran dapatan halaju pergelangan tangan yang dikehendaki bagi kedua-dua pendekatan model dinamik seterusnya mengukuhkan proses ramalan melalui peranti kawalan mioelektronik rangka tangan.
Subject
Applied Mathematics,General Engineering,General Chemical Engineering,General Computer Science
Reference20 articles.
1. McGowan B, “Industrial exoskeletons: what you’re not hearing,” Occup. Heal. Saf. Mag., vol. 1, 2018. 2. Wahit MAA, Ahmad SA. (2018) Design and development of low-cost exoskeleton hand robot structure. IEEE Student Conf. Res. Dev. Inspiring Technol. Humanit. SCOReD 2017 - Proc., vol. 2018-Jan, pp. 45-49. doi: 10.1109/SCORED.2017.8305423. 3. Asogbon MG, Samuel OW, Jiang Y, Wang L, Geng Y, Sangaiah AK, Chen S, Fang P, and Li “Appropriate feature set and window parameters selection for efficient motion intent characterization towards intelligently smart emg-pr system,” Symmetry (Basel)., vol. 12, no. 10, pp. 1–20, 2020, doi: 10.3390/sym12101710. 4. Zhang L, Qi W, Hu Y, and Chen Y, “Disturbance-observer-based fuzzy control for a robot manipulator using an EMG-driven neuromusculoskeletal model,” Complexity, vol. 2020, 2020, doi: 10.1155/2020/8814460. 5. Chen C, Guo W, Ma C, Yang Y, Wang Z, and Lin C, “Semg-based continuous estimation of finger kinematics via large-scale temporal convolutional network,” Appl. Sci., vol. 11, no. 10, 2021, doi: 10.3390/app11104678.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|