CENTRIFUGAL COMPRESSOR EFFICIENCY CALCULATION WITH HEAT TRANSFER

Author:

Dragan Valeriu

Abstract

In this paper we present a case study of apparent performance variation ofan optimized centrifugal compressor design when its metal parts are cold - before the conjugated heat transfer between the fluid and parts reaches an energetic equilibrium. The methods used are numerical, using full viscous 3D computational fluid dynamics with heat transfer. Three cases were considered, an adiabatic wall baseline, an all-blade cooling at 293 K and a more realistic stator row cooling at 293 K. Results indicate an apparent yet erroneous isentropic efficiency reading increase beyond 100% - which was to be expected due to the fluid cooling. However the isentropic and polytropic efficiencies could be estimated and were used to more accurately assess the performance of the compressor. Power consumption decreased to approximately 97% of the original load while the pressure ratio was marginally increased. This alone does not, however, explain the non-physical efficiency readings, which are mainly due to the assumptionsand manner under which the efficiency itself is calculated. The paper  presents a more robust approach to measuring efficiency, regardless of the heat transfer within the turbomachinery itself. Possible applications of the study may range from cold-start regime simulation to the optimization of inter-cooling setup or even flow angle control without mechanically actuated OGV

Publisher

IIUM Press

Subject

Applied Mathematics,General Engineering,General Chemical Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3