Solar Thermal Process Parameters Forecasting for Evacuated Tubes Collector (ETC) Based on RNN-LSTM

Author:

Muhammad Ali Akbar ,Ahmad Jazlan ,Muhammad Mahbubur Rashid ,Mohd Zaki Hasan FirdausORCID,Muhammad Naveed Akhter ,Embong Abd HalimORCID

Abstract

Solar Heat for Industrial Process (SHIP) systems are a clean source of alternative and renewable energy for industrial processes. A typical SHIP system consists of a solar panel connected with a thermal storage system along with necessary piping. Predictive maintenance and condition monitoring of these SHIP systems are essential to prevent system downtime and ensure a steady supply of heated water for a particular industrial process. This paper proposes the use of recurrent neural network-based predictive models to forecast solar thermal process parameters. Data of five process parameters namely - Solar Irradiance, Solar Collector Inlet & Outlet Temperature, and Flux Calorimeter Readings at two points were collected throughout a four-month period. Two variants of RNN, including LSTM and Gated Recurrent Units, were explored and the performance for this forecasting task was compared. The results show that Root Mean Square Errors (RMSE) between the actual and predicted values were 0.4346 (Solar Irradiance), 61.51 (Heat Meter 1), 23.85 (Heat Meter 2), Inlet Temperature (0.432) and Outlet Temperature (0.805) respectively. These results open up possibilities for employing a deep learning based forecasting method in the application of SHIP systems. ABSTRAK: Penggunaan sumber bersih seperti Tenaga Solar dalam Proses Industri (SHIP) adalah satu kaedah alternatif untuk menhasilkan tenaga yang boleh diperbaharui bagi mengurangkan kesan gas rumah hijau yang terhasil dari proses industri. Sistem SHIP biasanya mengandungi panel solar dan sistem penyimpanan haba yang berhubung melalui paip yang sesuai. Penyelengaraan secara berkala diperlukan bagi memastikan sistem ini sentiasa membekalkan tenaga solar pada kadar bersesuaian dan bekalan tenaga solar yang terhasil berterusan dan tidak menjejaskan sistem pemanasan air bagi sesuatu proses industri. Kajian ini mencadangkan penggunaan model ramalan rangkaian neural berulang bagi meramal parameter proses pemanasan solar. Kelima-lima parameter proses iaitu – Iradiasi Solar, Suhu Saluran Keluar & Masuk Pengumpul Solar dan Bacaan Kalorimeter Fluks pada dua tempat diambil sepanjang empat bulan (dari Julai 2021 sehingga Oktober 2021). Dapatan menunjukkan dua varian RNN termasuk LSTM dan Unit Berulang dapat dibanding prestasinya bagi tugas ramalan ini. Dapatan kajian menunjukkan Ralat Punca Min Kuasa Dua (RMSE) antara bacaan sebenar dan ramalan adalah masing-masing 0.4346 (Iradiasi Solar), 61.51 (Meter Terma 1), 23.85 (Meter Terma 2), Suhu Salur Masuk (0.432) and Suhu Salur Keluar (0.805). Ini membuka peluang kajian mendalam berdasarkan kaedah ramalan dalam aplikasi sistem SHIP.

Funder

Ministry of Higher Education, Malaysia

Publisher

IIUM Press

Subject

Applied Mathematics,General Engineering,General Chemical Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3