Author:
Irawanto Mochamad Aditya,Setianingsih Casi,Irawan Budhi
Abstract
The intelligent traffic monitors are devloped and became more interst in recent years. A detection system in the monitoring traffic system is proposed using different algorithms. Pin Hole Algorithm used to detect the car that passes the road (the studied area). A fixed camera mounted at predetermined point used with known height (of the camera), the intensity of the light, and the visibility of the camera. The classification process is important to know the traffic congestion status. The traffic congestion status will be sent to the server address already provided. In the congestion detection test results were obtained with an accuracy value of 85% using the 64x64 grid division and obtaining good detection results for susceptible light intensity values between 5430 and 41379 LUX with an accuracy value of between 60% and 90%.
ABSTRAK: Sejak beberapa tahun ini, sistem pengawasan trafik pintar telah dibina dan terus berkembang luas. Sistem pengesanan dalam sistem trafik pengawasan telah dicadangkan menggunakan pelbagai algoritma. Algoritma lubang pin digunakan bagi mengesan kereta yang melalui jalan (kawasan kajian). Kamera dipasang tetap pada titik tertentu iaitu dengan menyelaras ketinggian kamera, keamatan cahaya, dan kebolehlihatan kamera. Proses klasifikasi sangat penting bagi menentukan status kesesakan trafik. Status kesesakan trafik akan dihantar ke alamat pelayan yang telah disediakan. Nilai ketepatan ujian pengesanan kesesakan yang diperoleh adalah 85% iaitu menggunakan pembahagi grid 64x64 dan dapatan kajian menunjukkan pengesanan yang baik bagi nilai keamatan cahaya antara 5430 dan 41379 LUX dengan nilai ketepatan antara 60% dan 90%.
Subject
Applied Mathematics,General Engineering,General Chemical Engineering,General Computer Science
Reference19 articles.
1. Royani, Tahere, Haddadnia J, Pooshideh MR. (2010) A simple method for calculating vehicle density in traffic images. In 6th IEEE Iranian Conference on Machine Vision and Image Processing: October 2010; pp 1-4.
2. Fibriliyanti, Yanita, Faradila LR, Taqwa A. (2017) Implementasi Pengolahan Citra dengan Metode Histogram Of Oriented Gradient (Hog) untuk Pengaturan Waktu pada Traffic Light Berdasarkan Deteksi Kepadatan Kendaraan. In Prosiding SNATIF: 2017; pp 403-412.
3. Directorate General Of Land Transportation Ministry of Transportation Republic of Indonesia. (2008) Technical Instructions for the Implementation of Road Equipment. Jakarta.
4. Nurhadiyatna A, Hardjono B, Wibisono A, Sina I, Jatmiko W, Ma'Sum MA, Mursanto P. (2013) Improved vehicle speed estimation using gaussian mixture model and hole filling algorithm. In 2013 IEEE International Conference on Advanced Computer Science and Information Systems (ICACSIS): September 2013; pp 451-456.
5. Kim KI, Jung K, Kim JH. (2002) Color texture-based object detection: an application to license plate localization. In Springer International Workshop on Support Vector Machines: August 2022; Berlin, Heidelberg. pp 293-309.