UNWEARABLE MULTI-MODAL GESTURES RECOGNITION SYSTEM FOR INTERACTION WITH MOBILE DEVICES IN UNEXPECTED SITUATIONS

Author:

Elleuch HaneneORCID,Wali AliORCID

Abstract

In this paper, a novel real-time system to control mobile devices, in unexpected situations like driving, cooking and practicing sports, based on eyes and hand gestures is proposed. The originality of the proposed system is that it uses a real-time video streaming captured by the front-facing camera of the device. To this end, three principal modules are charged to recognize eyes gestures, hand gestures and the fusion of these motions. Four contributions are presented in this paper. First, the proposition of the fuzzy inference system in the purpose of determination of eyes gestures. Second, a new database has been collected that is used in the classification of open and closed hand gesture. Third, two descriptors have been combined to have boosted classifiers that can detect hands gestures based on Adaboost detector. Fourth, the eyes and hand gestures are erged to command the mobile devices based on the decision tree classifier. Different experiments were assessed to show that the proposed system is efficient and competitive with other existing systems by achieving a recall of 76.53%, 98 % and 99% for eyes gesture recognition, detection of fist gesture, detection of palm gesture respectively and a success rate of 88% for eyes and hands gestures correlation. ABSTRAK:  Kajian ini mencadangkan satu sistem masa nyata bagi mengawal peranti mudah alih, dalam keadaan tak terjangka seperti sedang memandu, memasak dan bersukan, berdasarkan gerakan mata dan tangan. Kelainan sistem yang dicadangkan ini adalah ia menggunakan masa nyata video yang diambil daripada peranti kamera hadapan. Oleh itu, tiga modul utama ini telah ditugaskan bagi mengenal pasti isyarat mata, tangan dan gabungan kedua-dua gerakan. Empat sumbangan telah dibentangkan dalam kajian ini. Anggaran pertama bahawa isyarat gerak mata mempengaruhi sistem secara kabur. Kedua, pangkalan data baru telah dikumpulkan bagi pengelasan isyarat tangan terbuka dan tertutup. Ketiga, dua pemerihal data telah digabungkan bagi merangsangkan pengelasan yang dapat mengesan isyarat tangan berdasarkan pengesan Adaboost. Keempat, gerakan mata dan tangan telah digunakan bagi mengarah peranti mudah alih berdasarkan pengelasan carta keputusan. Eksperimen berbeza telah dijalankan bagi membuktikan bahawa sistem yang dicadang adalah berkesan dan berdaya saing dengan sistem sedia ada. Keputusan menunjukkan 76.53%, 98% dan 99% masing-masing telah dikesan pada pengesanan gerak isyarat mata, genggaman tangan dan tapak tangan, dengan kadar 88% berjaya mengesan gerak isyarat mata dan tangan.

Publisher

IIUM Press

Subject

Applied Mathematics,General Engineering,General Chemical Engineering,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3