Optimization of Culture Conditions for Mycelial Growth and Sporulation of Myrothecium roridum

Author:

Iqbal Muhammad1,Naz Sumera1,Khan Salik N.2,Farooq Shumaila2,Mohy-Ud-Din Ghulam1,Idrees Muhammad1,Mehboob Saira1,Riaz Hafiz M.3

Affiliation:

1. Plant Pathology Research Institute, Ayub Agriculture Research Institute Faisalabad, Pakistan

2. Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan

3. Department of Plant Pathology, Bahauddin Zakariya University, Multan, Pakistan

Abstract

Culture and nutrition conditions of Myrothecium roridum Tode were optimized by conducting a series of interlined experiments on a growth medium, temperature, pH, and photoperiod. In contrast, relation of culture age with virulence was measured by fungal development on young leaves of bitter gourd. The physiological response was measured on colony radial growth and spore production. Among the six test growth media, i.e., nutrient agar (NA), potato dextrose agar (PDA), Czapek-Dox agar (CDA), glucose agar (GA), malt extract agar (MEA), and bitter gourd agar (BGA), the highest radial growth (77 mm) and the highest number of spores (239 × 106 spores/ml) were observed on PDA. Incubation temperature was evaluated between a range of 15-40 °C, and the highest colony growth (87 mm) was observed at 30 °C, whereas the highest spore production (315 × 106 spores/ml) was at 35 °C. Different pH levels, i.e., 5, 5.5, 6, 6.5, 7, and 7.5, were optimized, and the highest colony growth (87 mm) and spore production (504 × 106 spores/ml) was recorded at pH 5.0. Impact of photoperiod was studied, and the highest mycelial growth (88 mm) and maximum spore production (524 × 106 spores/ml) was observed at 16/8 h alternate light and dark period. It was concluded that the optimum conditions for mycelia growth and spore production was pH 5.0-6.0 and at 30 ± 2 °C in PDA with 16/8 h alternate light and dark photoperiod.

Publisher

EScience Press

Subject

Plant Science,Agricultural and Biological Sciences (miscellaneous),Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3