Effect of Crop Rotation on Tomato Bacterial Wilt (Ralstonia solanacearum) and Survival of the Pathogen in the Rhizospheres and Roots of Different Crops in Ethiopia

Author:

Ayana Getachew,Fininsa Chemeda

Abstract

Survival of Ralstonia solanacearum in a environment or ecosystem depends on many factors, such as the race or strain of the pathogen, physical, chemical, biological soil factors and presence or absence of a host and non-hosts plants. The objectives of this study were to assess the effect of one and two season rotation sequences on the development of tomato bacterial wilt; and the survival ability of R. solanacearum in the rhizosphere and roots of presumable hosts and non-host crops in Ethiopia. A one season crop rotation involving tomato- maize-tomato, tomato- common beans -tomato and two season rotations consisting of tomato - maize- common bean-tomato, tomato –common beans – maize-tomato and tomato – tomato- tomato were established at Melkassa in Ethiopia. The effect of the system was evaluated on bacterial wilt of tomato under field conditions using a susceptible tomato cultivar (Marglobe). In one season rotation treatment involving common bean and maize after tomato resulted in a reduction of an average 6% and 16% final wilt incidence, respectively. Similarly, in the two seasons rotation sequence growing tomato after bean-maize and maize-bean resulted in about 29% average final wilt incidence reduction. The onset of wilt incidence was also delayed by one week in the two season rotations with common bean and maize compared to continues tomato growing and one season rotation with non-host crops. Survival of ability of R. solanacearum, strain designated as TomNa3 biovar 1 race 1 was studied under soil rhizosphere and roots of presumably non-host and hosts of different crops under glasshouse conditions. The pathogen was detected in rhizosphere soils and roots of presumable non-host and hosts for the pathogen after 120 days after inoculation. The population of bacterial pathogens was recorded in a declining trend but detectable in the rhizosphere soils and roots of presumable non-host crops at 30, 45, 60, 90 and 120 days after inoculation.

Publisher

EScience Press

Subject

Plant Science,Agricultural and Biological Sciences (miscellaneous),Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3