HYDRAULIC FRACTURING CANDIDATE-WELL SELECTION USING ARTIFICIAL INTELLIGENCE APPROACH

Author:

Aryanto Agus,Kasmungin Sugiatmo,Fathaddin Fathaddin

Abstract

<p><strong>.</strong><em> </em>Hydraulic fracturing is one of the stimulation method that aimed to increase productivity of well by creating a high conductive conduit in reservoir connecting it to the wellbore. This high conductivity zone is created by injecting fluid into matrix formation with enough rate and pressure. After crack initiate and propagate, the process continue with pumping slurry consist of fracturing fluid and sand. This slurry continues to extend the fracture and concurrently carries sand deeply into formation. After the materials pumped, carrier fluid will leak off to the formation and leave the sand holds the fracture created. TLS Formation in X and Y Field is widely known as a formation that have low productivity since it has low permeability around 5 md and low resistivity 3 Ohm-m. Oil from TLS formation could not be produced without fracturing. This formation also have high clay content, 20 – 40 % clay. Mineralogy analysis also shown that this formation contains water sensitive clay such as smectite and kaolinite. Hydraulic fracturing has been done in this field since 2002 on around 130 wells. At the beginning of hydraulic fracturing campaign, the success parameter is only to make the wells produce hydrocarbon in economical rate. As the fractured wells become larger in number, several optimization is also been done to increase oil gain. Later on, the needs of conclusive analysis to evaluate well performance after hydraulic fracturing rise up due to sharp decrement of crude oil price. Accurate analysis and recommendation need to be conducted to assess the best candidate for hydraulic fracturing to maximize success ratio. Even though a common practice, candidate-well selection is not a straightforward process and up to now, there has not been a well-defined approach to address this process. Conventional methods are not easy to use for nonlinear process, such as candidate-well selection that goes through a group of parameters having different attributes and features such as geological aspect, reservoir and fluid characteristics, production details, etc. and that’s because it is difficult to describe properly all their nonlinearities. In that matter, Artificial Intelligence approach is expected to be an alternative solution for this condition.</p>

Publisher

Universitas Presiden

Subject

Community and Home Care

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3