Fundamentals and Knowledge Relevant to the Drag Reduction Through Air Cavitation of Ship's Hulls

Author:

Amromin E

Abstract

Numerous experiments with ship drag reduction by air bottom cavitation in diverse countries have exhibited very different achievements. Therefore, a paper clarifying mechanics of this drag reduction and describing the proven design algorithms is appropriate.  Solutions of an ideal fluid problem existing in diverse ranges of Froude number are compared and the solutions suitable for ship drag reduction are considered in more detail. It is emphasized in this paper that a cavity locker at the trailing edge of the bottom niche (recess) assigned for the cavity is necessary to reduce the necessary air supply to the cavity and to mitigate the cavity tail pulsation resulting in a drag penalty. It is also pointed out that the bottom niche depth must allow for cavity withstanding under impact of waves in seaways. Bottom cavitation may even reduce wave-induced loads on the hull. With taking into account the above-mentioned design aspects, the energy spent on the air supply can be minimized. An algorithm of bottom design based on ideal fluid theory is also explained in the paper. Comparisons with several model test results are provided to illustrate the algorithm employment.

Publisher

University of Buckingham Press

Subject

Ocean Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3