Improving ship sustainability by re-using engineering simulators in multi-objective optimization

Author:

Elg Mia,Korvola Timo,Molchanov Bogdan,Tran Lien,Lappalainen Jari

Abstract

Alternatives for enhancing a cruise ship’s energy efficiency were investigated by introducing different waste heat recovery technologies and battery systems in the machinery. A ship designer’s in-house ship energy system simulator was applied in a cloud-based framework for simulation-based optimization. This multi-objective optimization with economic and environmental objectives used genetic algorithm for finding the best overall solution in a complex ship energy system design task. The results suggest that adding battery capacity alone contributes very moderately to reducing the case ship fuel consumption and, therefore, carbon emissions. Nevertheless, a combination of steam turbines and organic Rankine cycle units would offer the largest fuel saving potential with the lowest investment cost in the case setup. Also, the main engines’ running hours were of interest. The presented approach can bring significant added value for sustainable ship design with minimal additional effort.

Publisher

University of Buckingham Press

Subject

Ocean Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3