Discovery and preliminary validation of a new panel of personalized ovarian cancer biomarkers for individualized detection of recurrence

Author:

Ren Annie,Prassas IoannisORCID,Soosaipillai Antoninus,Sugumar Vijithan,Jarvi Stephanie,Soosaipillai Andrea,Bernardini Marcus Q.,Diamandis Eleftherios PORCID,Kulasingam Vathany

Abstract

Background: Following first-line treatment, over 80% of advanced ovarian cancer cases suffer recurrence. Treatment of patients with recurrence based on CA125 has not resulted in improvements in outcome postulating that we need biomarkers for earlier detection. A tumor-specific array of serum proteins with advanced proteomic methods could identify personalized marker signatures that detect relapse at a point where early intervention may improve outcome. Methods: For our discovery phase, we employed the proximity extension assay (PEA) to simultaneously measure 1,104 proteins in 120 longitudinal serum samples (30 ovarian cancer patients). For our validation phase, we used PEAs to concurrently measure 644 proteins (including 21 previously identified candidates, plus CA125 and HE4) in 234 independent, longitudinal serum samples (39 ovarian cancer patients). Results: We discovered 23 candidate personalized markers (plus CA125 and HE4), in which personalized combinations were informative of recurrence in 92% of patients. In our validation study, 21 candidates were each informative of recurrence in 3-35% of patients. Patient-centric analysis of 644 proteins generated a refined panel of 33 personalized tumor markers (included 18 validated candidates). The panel offered 91% sensitivity for identifying individualized marker combinations that were informative of recurrence. Conclusion: Tracking individualized combinations of tumor markers may offer high sensitivity for detecting recurrence early and aid in prompt clinical referral to imaging and treatment interventions.

Funder

None

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3