Analysis of time-domain indices, frequency domain measures of heart rate variability derived from ECG waveform and pulse-wave-related HRV among overweight individuals: an observational study

Author:

Kumar Sinha MukeshORCID,Vaishali K.ORCID,Maiya G. Arun,Shivashankar K.N.,Shashikiran U.

Abstract

Background: Research on the compatibility of time domain indices, frequency domain measurements of heart rate variability obtained from electrocardiogram (ECG) waveforms, and pulse wave signal (pulse rate variability; PRV) features is ongoing. The promising marker of cardiac autonomic function is heart rate variability. Recent research has looked at various other physiological markers, leading to the emergence of pulse rate variability. The pulse wave signal can be studied for variations to understand better changes in arterial stiffness and compliance, which are key indicators of cardiovascular health. Methods: 35 healthy overweight people were included. The Lead II electrocardiogram (ECG) signal was transmitted through an analog-to-digital converter (PowerLab 8/35 software, AD Instruments Pty. Ltd., New South Wales, Australia). This signal was utilized to compute Heart Rate Variability (HRV) and was sampled at a rate of 1024 Hz. The same AD equipment was also used to capture a pulse signal simultaneously. The right index finger was used as the recording site for the pulse signal using photoplethysmography (PPG) technology. Results: The participants' demographic data show that the mean age was 23.14 + 5.27 years, the mean weight was 73.68 +  7.40 kg, the mean body fat percentage was 32.23  +  5.30, and the mean visceral fat percentage was 4.60  +  2.0. The findings revealed no noticeable difference between the median values of heart rate variability (HRV) and PRV. Additionally, a strong correlation was observed between HRV and PRV. However, poor agreement was observed in the measurement of PRV and HRV. Conclusion: All indices of HRV showed a greater correlation with PRV. However, the level of agreement between HRV and PRV measurement was poor. Hence, HRV cannot be replaced with PRV and vice-versa.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference29 articles.

1. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology.;Circulation.,1996

2. Heart Rate Variability Analysis on Electrocardiograms, Seismocardiograms and Gyrocardiograms on Healthy Volunteers.;S Sieciński;Sensors (Basel).,2020

3. An Overview of Heart Rate Variability Metrics and Norms.;F Shaffer;Front. Public Health.,2017

4. Obesity, Nutrition and Heart Rate Variability.;A Strüven;Int. J. Mol. Sci.,2021

5. Hypertension, blood pressure, and heart rate variability: the Atherosclerosis Risk in Communities (ARIC) study.;E Schroeder;Hypertension.,2003

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3