Recognizing human activities using light-weight and effective machine learning methodologies

Author:

Varadhi KeerthiORCID,Someswara Rao Chinta,Sirisha GNVG,katari Butchi Raju

Abstract

Background Human activity recognition poses a complex challenge in predicting individuals’ movements from raw sensor data using machine learning models. This paper explores the application of six prominent machine learning techniques – decision tree, random forest, linear regression, Naïve Bayes, k-nearest neighbor, and neural networks – to enhance the accuracy of human activity detection for e-health systems. Despite previous research efforts employing data mining and machine learning, there remains room for improvement in performance. The study focuses on predicting activities such as walking, standing, laying, sitting, walking upstairs, and walking downstairs. Methods The research employs six machine learning algorithms to recognize human activities, including decision tree, random forest, linear regression, Naïve Bayes, k-nearest neighbor, and neural networks. Results Evaluation of the human activity recognition dataset reveals that the random forest classifier, CNN, GRN and neural network yield promising results, achieving high accuracy. However, Naïve Bayes falls short of satisfying outcomes. Conclusions The study successfully classifies activities like SITTING, STANDING, LAYING, WALKING, WALKING_DOWNSTAIRS, and WALKING_UPSTAIRS with a remarkable accuracy of 98%. The contribution lies in the thorough exploration of machine learning techniques, with neural networks emerging as the most effective in enhancing human activity recognition. The findings showcase the potential for advanced applications in e-health systems and beyond.

Publisher

F1000 Research Ltd

Reference26 articles.

1. Recognizing human actions: a local SVM approach.;I Schüldt;Pattern Proceedings of the 17th International Conference on Pattern Recognition.,2004

2. Learning realistic human actions from movies.;I Laptev;2008 IEEE Conference on Computer Vision and Pattern Recognition.,2008

3. Recognizing human action in time-sequential images using hidden markov model.;J Yamato;Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.,1992

4. A Bayesian computer vision system for modeling human interactions.;N Oliver;IEEE Transactions on Pattern Analysis and Machine Intelligence.,2000

5. View and scale invariant action recognition using multiview shape-flow models.;P Natarajan;2008 IEEE Conference on Computer Vision and Pattern Recognition.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3