Combined exosome of adipose-derived mesenchymal stem cell and hyaluronic acid delays early osteoarthritis progression of ovine sheep model: Clinical, radiographic and macroscopic evaluation

Author:

Powantia Pontoh Ludwig AndribertORCID,Fiolin Jessica,Dilogo Ismail Hadisoebroto,Prasetyo MarcelORCID,Antarianto Radiana Dhewayani,Harahap Alida,Tantry Angela Jennifer,Pakasi Trevino Aristakus,Priosoeryanto Bambang Pontjo,Dewi Tri Isyani Tungga

Abstract

Background Current treatment of osteoarthritis (OA) mainly focused on treating symptoms. Exosome from Adipose-derived Mesenchymal Stem Cell (Ad-MSC) have been shown to delay degenerative process. This study aimed to investigate the clinical, radiological and histological impact of combined intra-articular (IA) hyaluronic acid (HA) and exosome Ad-MSCs in-vivo using a larger animal model with low-grade OA. Methods Eighteen male Ovies aries sheep underwent total lateral meniscectomy and conventional radiography was performed to confirm low-grade OA after 6 weeks. The sheep were divided into three groups, Group 1 (G1; n=6) received thrice exosome injections, G2 (n=6) received twice HA injection, and G3 (n=6) received both treatments with a 1-week interval after 10 days of meniscectomy. Clinical evaluations were conducted using the Clinical Lameness Score (CLS), radiographic with X-ray using OA score by Innes et al, while macroscopic evaluation by Osteoarthritis Research Society International (OARSI) scores. Results Lameness parameter scored lowest in G3 significantly (2.0±0.0 VS 2.7±0.52 VS 2.7±0.52; p=0.024) at the second month although the overall CLS score did not significantly differ at the 3rd month. The best improvement of conventional total OA radiographic score at the 3rd month compared to all groups (5.2±1.17 vs 6.3±0.82 vs 6.7±1.03; p=0.053). Macroscopic OARSI evaluation showed no difference (p=0.711). Conclusions Combined repeated exosome Ad-MSC and HA IA injection proven to delay OA progression, however longer duration of follow up is required to evaluate its long-term effect.

Funder

Badan Riset dan Inovasi Nasional

Publisher

F1000 Research Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3