Logarithmic distributions prove that intrinsic learning is Hebbian

Author:

Scheler GabrieleORCID

Abstract

In this paper, we document lognormal distributions for spike rates, synaptic weights and intrinsic excitability (gain) for neurons in various brain areas, such as auditory or visual cortex, hippocampus, cerebellum, striatum, midbrain nuclei. We find a remarkable consistency of heavy-tailed, specifically lognormal, distributions for rates, weights and gains in all brain areas. The difference between strongly recurrent and feed-forward connectivity (cortex vs. striatum and cerebellum), neurotransmitter (GABA (striatum) or glutamate (cortex)) or the level of activation (low in cortex, high in Purkinje cells and midbrain nuclei) turns out to be irrelevant for this feature. Logarithmic scale distribution of weights and gains appears as a functional property that is present everywhere.  Secondly, we created a generic neural model to show that Hebbian learning will create and maintain lognormal distributions. We could prove with the model that not only weights, but also intrinsic gains, need to have strong Hebbian learning in order to produce and maintain the experimentally attested distributions. This settles a long-standing question about the type of plasticity exhibited by intrinsic excitability.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference49 articles.

1. Diversity and stability in neuronal output rates;G Scheler;Soc Neurosci Meeting.,2006

2. Sparse representation of sounds in the unanesthetized auditory cortex.;T Hromádka;PLoS Biol.,2008

3. Inhibition of the slow calcium-dependent potassium channel in the lateral dorsal striatum enhances action potential firing in slice and enhances performance in a habit memory task;F Hopf;Soc Neurosci Meeting.,2005

4. Bidirectional plasticity of intrinsic excitability controls sensory inputs efficiency in layer 5 barrel cortex neurons in vivo.;S Mahon;J Neurosci.,2012

5. Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach.;C Günay;J Neurosci.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3