Detection of sleep apnea using polysomnographic signals

Author:

Usha Kumari Ch.ORCID,K SwarajaORCID,K MeenakshiORCID,T PadmaORCID

Abstract

Introduction: Sleep is important in humans, and it is affected by lifestyle changes. Improper sleep leads to serious physiological problems and disorders that occurs in human brain/scalp. These physiological changes and electrical activity of the human brain are recorded as electroencephalogram (EEG) signals. This paper describes the detection of a major sleep disorder \textit{i.e.}, sleep apnea (SA).  Methods: In this paper, sleep apnea is measured using various artifacts taken from the subjects. The discrete wavelet transform (DWT) is used to extract characteristics from an electroencephalogram (EEG) signal and to detect sleep. This is used to determine whether a person has obstructive sleep apnea (OSA) or central sleep apnea (CSA). The wavelet technique is used to split the EEG signal into five frequency bands: delta, theta, alpha, beta, and gamma.  Results: For these five frequency bands, the mean, standard deviation, variance, maximum, minimum, and energy are computed.  Discussion: A sleep problem is detected based on these characteristics.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference18 articles.

1. Wavelet transform feature extraction from human ppg, ecg, and eeg signal responses to elf pemf exposures: A pilot study.;D Cvetkovic;Digit. Signal Process.,2008

2. Statistical features-based comparison of analysis and synthesis of normal and epileptic electroencephalograms for various wavelets.;R Shriram;Turk. J. Electr. Eng. Comput. Sci.,2017

3. Feature extraction and optimisation for sleep apnea.;W Leong;2014 IEEE International Symposium on Robotics and Manufacturing Automation (ROMA).,2014

4. Feature extraction and reduction of wavelet transform coefficients for emg pattern classification.;A Phinyomark;Elektronika ir Elektrotechnika.,2012

5. Review paper on feature extraction methods for eeg signal analysis.;A Mane;Int. J. Emerg. Trend Eng. Basic Sci.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3