Green synthesis of gold nanoparticles using Pelargonium Graveolens leaf extract: characterization and anti-microbial properties (An in-vitro study)

Author:

Asker Ahmed Yousif MahdiORCID,Al Haidar Aseel Haidar M.J.

Abstract

Background In recent years, there has been a notable increase in the level of attention devoted to exploring capabilities of nanoparticles, specifically gold nanoparticles AuNPs, within context of modern times. AuNPs possess distinct biophysical properties, as a novel avenue as an antibacterial agent targeting Streptococcus Mutans and Candida Albicans. The aim of this study to create a nano-platform that has the potential to be environmentally sustainable, in addition to exhibiting exceptional antimicrobial properties against Streptococcus Mutans as well as Candida Albicans. Methods this study involved utilization of Pelargonium Graveolens leaves extract as a cost effective and environmentally sustainable approach for the green synthesis of AuNPs. Subsequently, physicochemical characteristics were assessed employing a variety of analytical methods, including as transmission electron microscopy, X-ray diffraction, Field Emission Scanning Electron Microscope, Zeta potential, Ultraviolet visible absorption spectroscopy, and Energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. The antimicrobial efficacy against Streptococcus Mutans and Candida Albicans was evaluated. Nanoparticles of various shapes, including hexagonal, spherical, semi-spherical, and triangular, were synthesized. These nanoparticles exhibited a mean particle size of 294nm and demonstrated low degree of aggregation. These nanoparticles exhibited long-term stability and were capable of facilely combining with diverse bioactive compounds. Results The study demonstrated that AuNPs which is synthesized by green methods display potent antimicrobial properties. Conclusion Utilization of Pelargonium Graveolens AuNPs may exhibit a promising potential as an antibacterial agent against Streptococcus Mutans and Candida Albicans. Nanoparticles (NPs) have the potential to serve as a novel approach for addressing pathogen infections as well as for biomedical, dental and pharmaceutical purposes in the future.

Funder

No external Fund

Publisher

F1000 Research Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3