Aerodynamic performance enhancement of centrifugal compressor using numerical techniques

Author:

S ShivaniORCID,A Amar Murthy,G SrinivasORCID

Abstract

Background Centrifugal compressors are dynamic machines utilizing a rotating impeller, efficiently accelerate incoming gases, transforming kinetic energy into pressure energy for compression. They serve a wide range of industries, including air conditioning, refrigeration, gas turbines, industrial processes, and applications such as air compression, gas transportation, and petrochemicals, demonstrating their versatility. Designing a centrifugal compressor poses challenges related to achieving high aerodynamic efficiency, surge and choke control, material selection, rotor dynamics, cavitation, erosion, and addressing environmental considerations while balancing costs. Optimizing maintenance, reliability, and energy efficiency are essential aspects of the design process. Methods The primary objective of this research is to comprehensively investigate and improve the aerodynamic performance of centrifugal compressors. To accomplish this, a comprehensive investigation of variables such as blade number and hub diameter, along with various turbulence models will be conducted. This approach will leverage numerical techniques to fill the significant gaps in the current literature regarding centrifugal compressor design and optimization. The study encompasses the evaluation of two turbulence models, namely Shear Stress Transport and K-epsilon. Furthermore, it delves into the fine-tuning of blade geometry, including variations in blade number and hub diameter, aiming to refine the design for optimal performance. Extensive analyses using Ansys CFX encompass key variables such as Pressure, Mach Number, Density, Velocity, Turbulence Kinetic Energy, and Temperature. Results Notably, the optimized pressure profile yielded remarkable results, achieving a substantial 36% improvement, demonstrating the tangible benefits of these design enhancements. Conclusion The outcomes of this research hold significant utility for engineers, manufacturers, and regulatory bodies, offering invaluable insights and guidance to enhance compressor performance and efficiency.

Publisher

F1000 Research Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3