Automated Wormscan

Author:

Puckering TimothyORCID,Thompson Jake,Sathyamurthy Sushruth,Sukumar Sinduja,Shapira Tirosh,Ebert PaulORCID

Abstract

There has been a recent surge of interest in computer-aided rapid data acquisition to increase the potential throughput and reduce the labour costs of large scale Caenorhabditis elegans studies. We present Automated WormScan, a low-cost, high-throughput automated system using commercial photo scanners, which is extremely easy to implement and use, capable of scoring tens of thousands of organisms per hour with minimal operator input, and is scalable. The method does not rely on software training for image recognition, but uses the generation of difference images from sequential scans to identify moving objects. This approach results in robust identification of worms with little computational demand. We demonstrate the utility of the system by conducting toxicity, growth and fecundity assays, which demonstrate the consistency of our automated system, the quality of the data relative to manual scoring methods and congruity with previously published results.

Funder

Australian Research Council

Plant Biosecurity Cooperative Research Centre

Australian Federal Government

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3