Transcription factor binding site clusters identify target genes with similar tissue-wide expression and buffer against mutations

Author:

Lu Ruipeng,Rogan Peter K.ORCID

Abstract

Background:The distribution and composition ofcis-regulatory modules composed of transcription factor (TF) binding site (TFBS) clusters in promoters substantially determine gene expression patterns and TF targets. TF knockdown experiments have revealed that TF binding profiles and gene expression levels are correlated. We use TFBS features within accessible promoter intervals to predict genes with similar tissue-wide expression patterns and TF targets.Methods:Genes with correlated expression patterns across 53 tissues and TF targets were respectively identified from Bray-Curtis Similarity and TF knockdown experiments. Corresponding promoter sequences were reduced to DNase I-accessible intervals; TFBSs were then identified within these intervals using information theory-based position weight matrices for each TF (iPWMs) and clustered. Features from information-dense TFBS clusters predicted these genes with machine learning classifiers, which were evaluated for accuracy, specificity and sensitivity. Mutations in TFBSs were analyzed toin silicoexamine their impact on cluster densities and the regulatory states of target genes.Results:  We initially chose the glucocorticoid receptor gene (NR3C1), whose regulation has been extensively studied, to test this approach.SLC25A32andTANKwere found to exhibit the most similar expression patterns toNR3C1. A Decision Tree classifier exhibited the largest area under the Receiver Operating Characteristic (ROC) curve in detecting such genes. Target gene prediction was confirmed using siRNA knockdown of TFs, which was found to be more accurate than those predicted after CRISPR/CAS9 inactivation.In-silicomutation analyses of TFBSs also revealed that one or more information-dense TFBS clusters in promoters are required for accurate target gene prediction. Conclusions: Machine learning based on TFBS information density, organization, and chromatin accessibility accurately identifies gene targets with comparable tissue-wide expression patterns. Multiple information-dense TFBS clusters in promoters appear to protect promoters from effects of deleterious binding site mutations in a single TFBS that would otherwise alter regulation of these genes.

Funder

Canada Foundation for Innovation

Compute Canada

Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

Western University

Shared Hierarchical Academic Research Computing Network

Cytognomix Inc.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3