Mechanisms of Selected Cassipourea Metabolites for Melasma Treatment: Network Pharmacology and Molecular Dynamics Study

Author:

Mpofana NomakhosiORCID,Peter ChristinaORCID,Lukman Halimat Yusuf,Makgobole Mokgadi Ursula,Dlova Ncoza Cordelia,Gqaleni Nceba,Hussein Ahmed,Sabiu Saheed

Abstract

Background Melasma is a common dyschromia, mainly found in women with darker skin types. Although asymptomatic, melasma significantly impacts patients’ quality of life. Due to this complex pathogenesis, melasma is difficult to treat. Plant and plant-derived products have been explored as alternatives for the treatment of melasma. Methods This study utilized network pharmacology coupled with molecular docking and molecular dynamics simulations to investigate the molecular mechanisms of three selected Cassipourea metabolites in the treatment of melasma. Results Of the 202 genes obtained from the 14 profiled metabolites, only PTGS2, TYR, ESR2, and ESR1 were common among metabolites and targets implicated in melasma. From this, The gene ontology highlighted the intracellular steroid hormone receptor, signalling pathway, macromolecular complex, and estrogen receptor activity as the top enriched functional annotations, while the KEGG pathway analysis identified five signalling pathways, from which the prolactin signalling pathway, endocrine resistance, and estrogen signalling pathway were implicated in the pathogenesis of melasma. These pathways were further connected by their linkage to ESR2 and ESR1., Of all Cassipourea metabolites and standards, with afzelechin having the highest docking score for both gens. Further binding interaction analysis showed that ESR2-bound tamoxifen had the highest binding free energy of -47.68 kcal/mol, however, among the interacting Cassipourea metabolites, sitosterol-glycoside exhibited the highest negative binding affinity for both ESR2 (-40.50 kcal/mol) and ESR1 (-78.97 kcal/mol) over 150 ns simulation, suggesting its potential as a dual modulator. Altogether, the metabolites presented remarkable binding stability and thermodynamic compactness with the apo-genes. Conclusion The finding that the selected Cassipourea metabolites are associated with the genes and enzymes implicated in melasma pathogenesis, together with their significant binding effects on the enriched genes, suggests their regulatory potential on the profiled targets and, consequently, in the treatment of melasma.

Funder

Department of Science and Innovation (DSI) 'Cosmeceutical Concepts and Product Development'

National Research Foundation of South Africa

Publisher

F1000 Research Ltd

Reference66 articles.

1. Anatomy and Function of the Skin

2. Spectrophotometric determination of Sun Protection Factor and antioxidant potential of an herbal mixture.;M Singh;Br. Biotechnol. J.,2016

3. Screening of some medicinal plants for their antityrosinase and antioxidant activities.;N Narayanaswamy;Int. J. PharmTech Res.,2011

4. Thai plants with high antioxidant levels, free radical scavenging activity, anti-tyrosinase and anti-collagenase activity.;M Chatatikun;BMC Complement. Altern. Med.,2017

5. Validation of medicinal herbs for anti-tyrosinase potential.;P Mukherjee;J. Herb. Med.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3